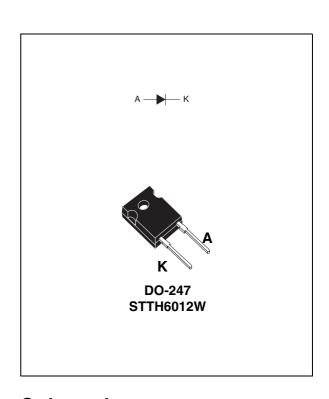


Ultrafast recovery - 1200 V diode

Main product characteristics

I _{F(AV)}	60 A
V _{RRM}	1200 V
Tj	175° C
V _F (typ)	1.30 V
t _{rr} (typ)	50 ns

Features and benefits


- Ultrafast, soft recovery
- Very low conduction and switching losses
- High frequency and/or high pulsed current operation
- High reverse voltage capability
- High junction temperature

Description

The high quality design of this diode has produced a device with low leakage current, regularly reproducible characteristics and intrinsic ruggedness. These characteristics make it ideal for heavy duty applications that demand long term reliability.

Such demanding applications include industrial power supplies, motor control, and similar mission-critical systems that require rectification and freewheeling. These diodes also fit into auxiliary functions such as snubber, bootstrap, and demagnetization applications.

The improved performance in low leakage current, and therefore thermal runaway guard band, is an immediate competitive advantage for this device.

Order codes

Part Number Marking	
STTH6012W	STTH6012W

Characteristics STTH6012

Characteristics 1

Absolute ratings (limiting values at 25° C, unless otherwise specified) Table 1.

Symbol	Parameter		Value	Unit			
V _{RRM}	Repetitive peak reverse voltage		1200	V			
I _{F(RMS)}	RMS forward current			80	Α		
I _{F(AV)}	Average forward current, δ = 0.5 T_c = 90° C		T _c = 90° C	60	Α		
I _{FRM}	Repetitive peak forward current	t _p = 5 μs, F = 5 kHz square		500	Α		
I _{FSM}	Surge non repetitive forward current	t _p = 10 ms Sinusoidal		t _p = 10 ms Sinusoidal		400	Α
T _{stg}	Storage temperature range		-65 to + 175	°C			
T _j	Maximum operating junction temperature		175	°C			

Table 2. Thermal parameter

Symbol Parameter		Value	Unit	
R _{th(j-c)}	Junction to case	0.6	°C/W	

Table 3. Static electrical characteristics

Symbol	Parameter	Test conditions		Min.	Тур	Max.	Unit
I _R ⁽¹⁾ Reverse leakage current	Deverage leakers assument	T _j = 25° C	V V			30	
	T _j = 125° C	$V_R = V_{RRM}$		30	300	μΑ	
V _F ⁽²⁾ Forward voltage drop		T _j = 25° C				2.25	
	Forward voltage drop	T _j = 125° C	I _F = 60 A		1.35	2.05	V
		T _j = 150° C			1.30	1.95	

^{1.} Pulse test: t_p = 5 ms, δ < 2 %

To evaluate the conduction losses use the following equation: P = 1.50 x $I_{F(AV)}$ + 0.0075 I_{F}^{2} _(RMS)

$$P = 1.50 \times I_{F(AV)} + 0.0075 I_{F(RMS)}^{2}$$

^{2.} Pulse test: t_p = 380 μ s, δ < 2 %

STTH6012 Characteristics

Table 4. Dynamic characteristics

Symbol	Parameter	Test conditions	Min.	Тур	Max.	Unit
		$I_F = 1 \text{ A, } dI_F/dt = -50 \text{ A/}\mu\text{s,}$ $V_R = 30 \text{ V, } T_j = 25^{\circ} \text{ C}$			125	
t _{rr}	Reverse recovery time	I_F = 1 A, dI_F/dt = -100 A/ μ s, V_R = 30 V, T_j = 25° C		63	85	ns
		I_F = 1 A, dI_F/dt = -200 A/ μ s, V_R = 30 V, T_j = 25° C		50	70	
I _{RM}	Reverse recovery current	$I_F = 60 \text{ A}, dI_F/dt = -200 \text{ A/}\mu\text{s},$ $V_R = 600 \text{ V}, T_j = 125^{\circ} \text{ C}$		32	45	Α
S	Softness factor	$I_F = 60 \text{ A}, dI_F/dt = -200 \text{ A/}\mu\text{s},$ $V_R = 600 \text{ V}, T_j = 125^{\circ} \text{ C}$		1		
t _{fr}	Forward recovery time	$I_F = 60 \text{ A}$ $dI_F/dt = 100 \text{ A/}\mu\text{s}$ $V_{FR} = 1.5 \text{ x } V_{Fmax}, T_j = 25^{\circ} \text{ C}$			750	ns
V _{FP}	Forward recovery voltage	$I_F = 60 \text{ A}, dI_F/dt = 100 \text{ A/}\mu\text{s},$ $T_j = 25^{\circ} \text{ C}$		4.5		V

Figure 1. Conduction losses versus average current

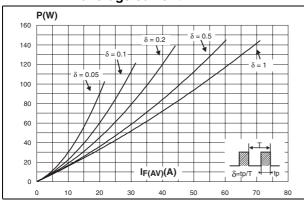
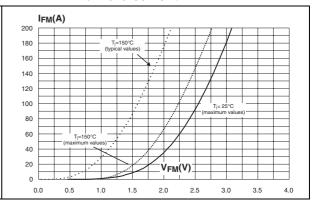



Figure 2. Forward voltage drop versus forward current

